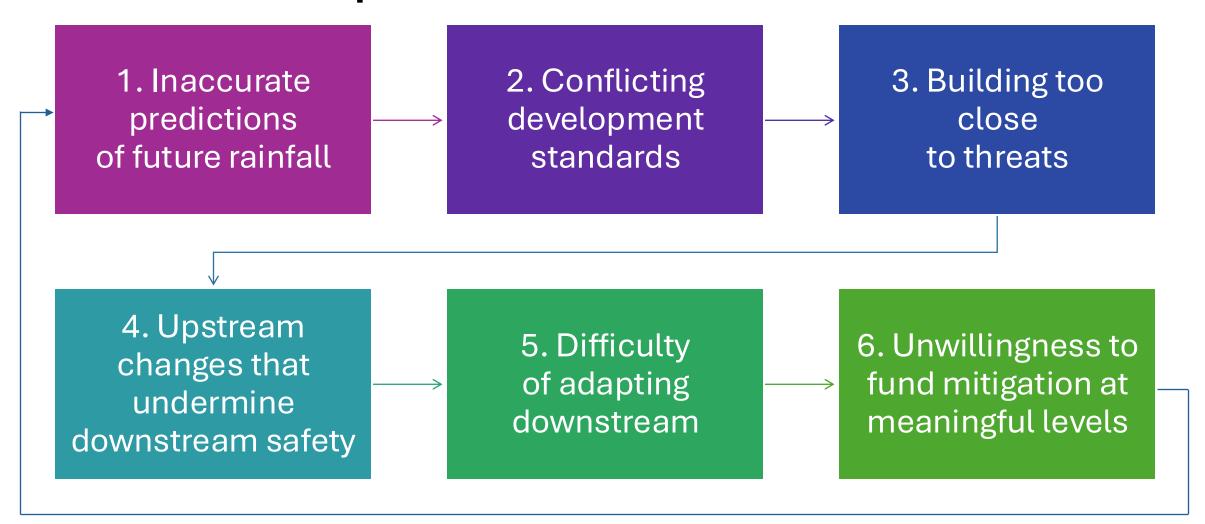


A 75-Year Look Back


25.1 ft Estimated 0.2% Flood Depth

18.7 ft Estimated 1% Flood Depth

May 20, 2025

Graphic is not to scale.

Doom Loop

1. Inaccurate Predictions of Future Rainfall

Homes built above 1% annual-chance flood

Extreme Value Analysis (EVA)

Small data sets

Revise after major disasters

Harvey 25-30% > Allison, 50% > Carla

Iterations of Design Rainfall Depth Statistics

1961 Carla – Technical Paper 40 (TP-40) – 12 inches

2004 Allison – 13.5 inches

2018 Harvey – Atlas 14 – 18 inches

Some places in region still using TP-40

What Designs Change As Consequence?

- Floodplain boundaries
- Building requirements
- Detention basin sizing
- Subdivision drainage plans
- Bridge design
- Culvert sizes
- Channel widths

PDS-based precipitation frequency estimates with 90% confidence intervals (in inches) ¹										
Duration	Average recurrence interval (years)									
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.495 (0.375-0.653)	0.584 (0.446-0.763)	0.729 (0.556-0.958)	0.851 (0.638-1.13)	1.02 (0.740-1.40)	1.15 (0.812-1.62)	1.28 (0.884-1.86)	1.42 (0.956-2.12)	1.62 (1.05-2.49)	1.77 (1.12-2.80)
10-min	0.784 (0.593-1.03)	0.927 (0.707-1.21)	1.16 (0.883-1.52)	1.36 (1.02-1.81)	1.63 (1.18-2.23)	1.84 (1.30-2.60)	2.05 (1.41-2.97)	2.26 (1.52-3.37)	2.54 (1.65-3.92)	2.76 (1.75-4.36)
15-min	0.998 (0.756-1.32)	1.17 (0.897-1.54)	1.46 (1.11-1.92)	1.70 (1.28-2.27)	2.03 (1.48-2.79)	2.29 (1.62-3.22)	2.54 (1.76-3.69)	2.82 (1.90-4.20)	3.20 (2.08-4.93)	3.50 (2.21-5.53)
30-min	1.43 (1.08-1.89)	1.68 (1.28-2.19)	2.07 (1.58-2.73)	2.40 (1.81-3.21)	2.86 (2.07-3.91)	3.20 (2.26-4.51)	3.56 (2.45-5.16)	3.96 (2.66-5.90)	4.53 (2.95-6.99)	5.00 (3.17-7.90)
60-min	1.89 (1.43-2.49)	2.23 (1.70-2.91)	2.78 (2.12-3.65)	3.24 (2.43-4.32)	3.88 (2.81-5.31)	4.37 (3.08-6.14)	4.88 (3.37-7.08)	5.49 (3.69-8.18)	6.38 (4.15-9.85)	7.13 (4.51-11.3)
2-hr	2.29 (1.74-3.02)	2.81 (2.13-3.60)	3.60 (2.74-4.69)	4.30 (3.24-5.71)	5.31 (3.87-7.25)	6.13 (4.35-8.61)	7.03 (4.87-10.2)	8.10 (5.46-12.0)	9.71 (6.33-14.9)	11.1 (7.04-17.4)
3-hr	2.52 (1.92-3.30)	3.17 (2.38-4.00)	4.12 (3.15-5.35)	5.00 (3.78-6.63)	6.32 (4.62-8.62)	7.41 (5.28-10.4)	8.65 (6.00-12.5)	10.1 (6.82-14.9)	12.3 (8.04-18.9)	14.2 (9.05-22.3)
6-hr	2.91 (2.23-3.81)	3.80 (2.84-4.72)	5.05 (3.86-6.51)	6.25 (4.74-8.25)	8.09 (5.96-11.0)	9.67 (6.94-13.6)	11. 5 (8.01-16.5)	13.6 (9.24-20.1)	16.9 (11.1-25.8)	19.7 (12.6-30.8)
12-hr	3.36 (2.58-4.37)	4.46 (3.33-5.47)	6.00 (4.61-7.70)	7.51 (5.72-9.87)	9.84 (7.29-13.4)	11.9 (8.57-16.7)	14.3 (9.99-20.4)	17.1 (11.6-25.0)	21.4 (14.0-32.5)	25.0 (16.0-39.0)
24-hr	3.82 (2.95-4.96)	5.17 (3.85-6.27)	7.02 (5.40-8.95)	8.86 (6.77-11.6)	11.7 (8.74-15.9)	14.3 (10.4-20.0)	17.3 (12.1-24.6)	20.7 (14.1-30.2)	25.8 (17.0-39.2)	30.2 (19.4-46.9)
2-day	4.27 (3.31-5.52)	5.91 (4.38-7.05)	8.09 (6.25-10.3)	10.3 (7.93-13.5)	13.9 (10.5-18.9)	17.1 (12.5-24.0)	20.9 (14.7-29.6)	24.8 (17.0-36.0)	30.4 (20.1-45.8)	35.0 (22.6-54.1)
3-day	4.62 (3.59-5.96)	6.41 (4.76-7.63)	8.80 (6.81-11.1)	11.2 (8.64-14.6)	15.1 (11.4-20.5)	18.7 (13.7-26.1)	22.7 (16.0-32.1)	26.8 (18.4-38.9)	32.6 (21.6-49.0)	37.1 (24.0-57.4)
4-day	4.95 (3.85-6.36)	6.80 (5.08-8.13)	9.31 (7.23-11.8)	11.8 (9.13-15.4)	15.8 (12.0-21.5)	19.5 (14.3-27.2)	23.6 (16.7-33.3)	27.8 (19.1-40.2)	33.6 (22.3-50.5)	38.3 (24.8-59.0)
7-day	5.76 (4.49-7.38)	7.70 (5.82-9.27)	10.4 (8.10-13.1)	13.0 (10.1-16.9)	17.1 (13.0-23.1)	20.8 (15.3-28.9)	25.0 (17.7-35.2)	29.3 (20.2-42.2)	35.3 (23.5-52.8)	40.0 (26.0-61.5)
10-day	6.44 (5.04-8.24)	8.44 (6.43-10.2)	11.3 (8.80-14.2)	14.0 (10.8-18.0)	18.1 (13.8-24.4)	21.9 (16.1-30.2)	26.0 (18.5-36.6)	30.3 (20.9-43.7)	36.3 (24.2-54.3)	41.1 (26.8-63.1)
20-day	8.51 (6.68-10.8)	10.6 (8.22-13.0)	13.7 (10.8-17.2)	16.5 (12.9-21.3)	20.8 (15.8-27.8)	24. 5 (18.0-33.6)	28.5 (20.3-39.9)	32.7 (22.7-46.9)	38.5 (25.8-57.3)	43.1 (28.2-65.8)
30-day	10.3 (8.10-13.1)	12.5 (9.76-15.4)	15.8 (12.4-19.8)	18.7 (14.6-24.0)	23.1 (17.5-30.6)	26.7 (19.7-36.5)	30.6 (21.9-42.7)	34.6 (24.1-49.6)	40.2 (27.0-59.7)	44.5 (29.2-67.9)
45-day	13.0 (10.3-16.5)	15.4 (12.2-19.2)	19.1 (15.2-24.1)	22.3 (17.5-28.6)	26.9 (20.4-35.5)	30.5 (22.5-41.5)	34.2 (24.5-47.8)	38.0 (26.6-54.5)	43.1 (29.1-64.0)	47.0 (30.9-71.6)
60-day	15.5 (12.3-19.6)	18.1 (14.4-22.7)	22.3 (17.7-28.1)	25.7 (20.2-32.9)	30.5 (23.1-40.2)	34.1 (25.2-46.3)	37.7 (27.1-52.6)	41.3 (28.9-59.1)	46.0 (31.0-68.0)	49.4 (32.5-75.1)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS)

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

2. Conflicting Development Standards

Higher building codes reduced flood damage 20X.

But people want to develop cheap land in floodplains

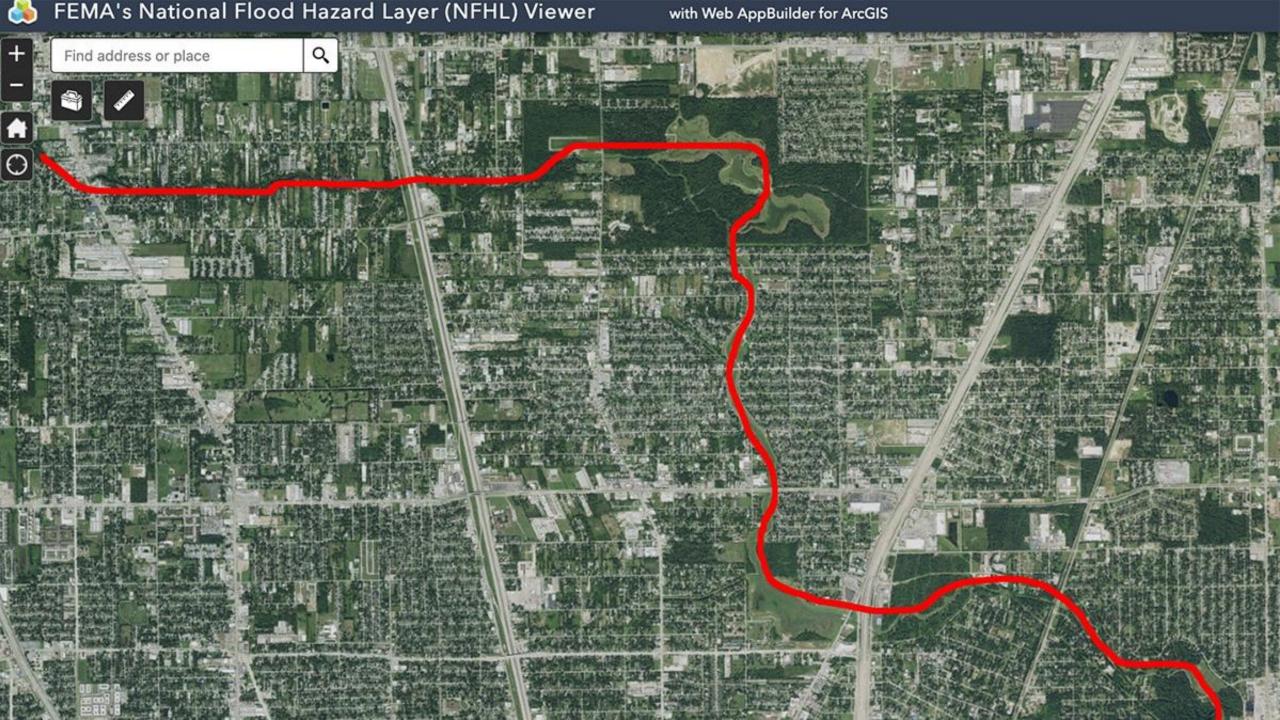
Science meets politics

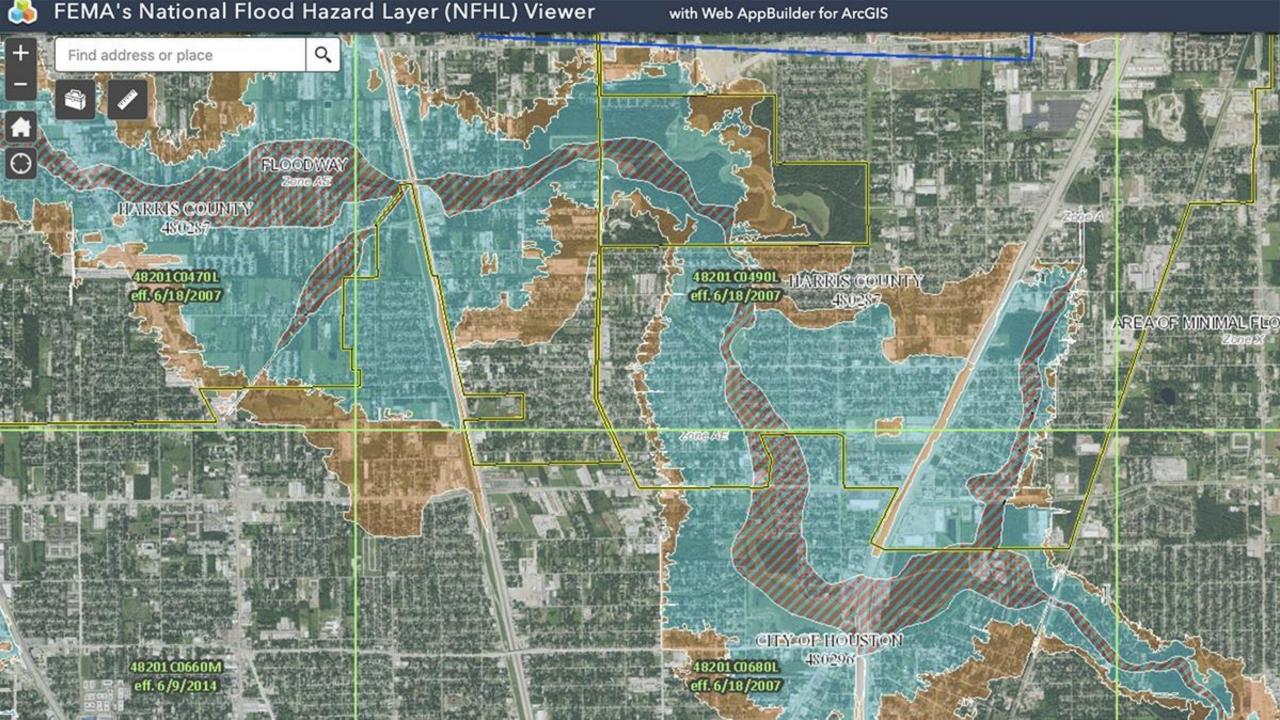
Some areas use lower standards/regulation to attract new development

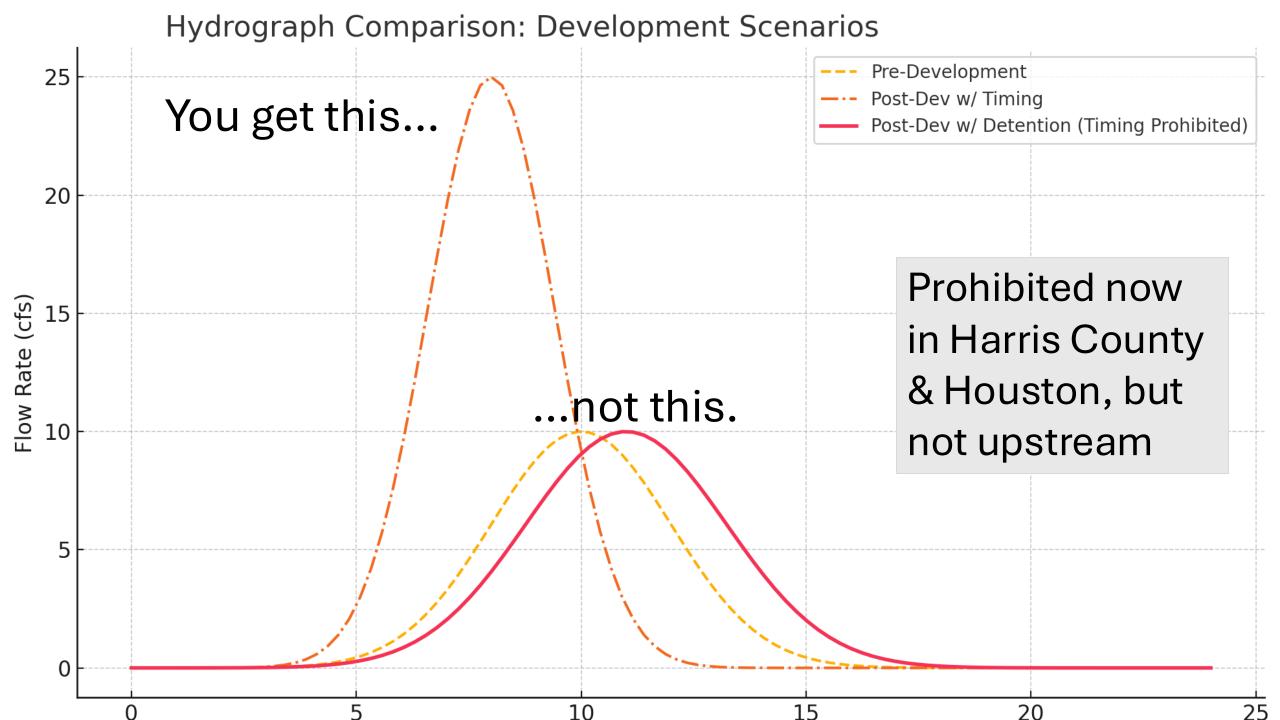
Lobbying, grandfathering, delays, property-rights lawsuits, board appts.

3. Building Too Close to Threats

Love of living near water


Poor understanding of risk Low cost/high profit for developers


Buyers must ALWAYS look out for themselves. Governments represent MANY interests.



4. Upstream Development that Undermines Downstream Safety Margins

Insufficiently mitigated

100-year floods on 10-year rains Hydrologic timing studies

5. Difficulty of Adapting Downstream

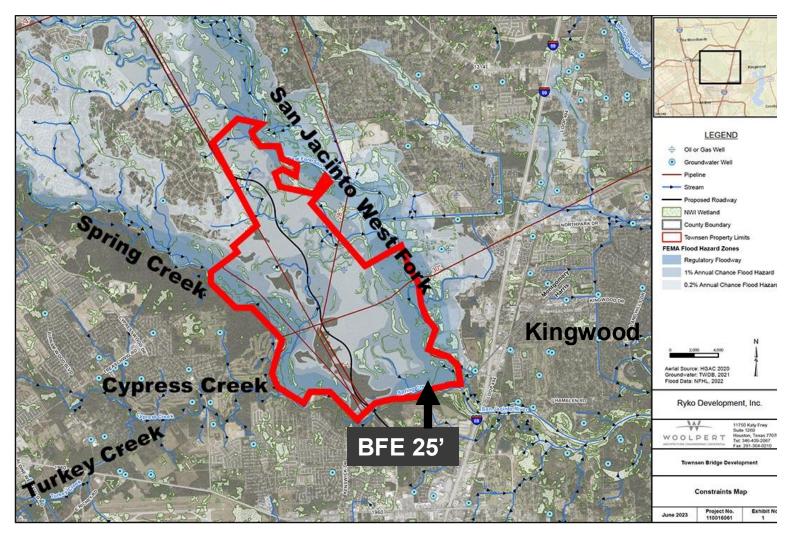
Infrastructure, homes, businesses in place

No room to mitigate

Must buy out whole neighborhoods

Expensive, disruptive, often unpalatable

Puts leaders in "double-bind"



6. Historical Unwillingness to Fund Flood Mitigation at Meaningful Levels

- Before 2018 flood bond, HCFCD had \$60mm/year for capital improvements
- Sometimes saved for years to build one detention basin
- But motivation gradually diminishes after major floods
- State Flood Infrastructure Fund
 - ~ \$1 billion in funds
 - ~ \$54 billion in projects
- FEMA, HUD uncertainty

Conclusion:
Process Repeated
Over and Over as
Houston Expands
Outward in
Concentric Circles

Ryko proposes building 7,000 homes in Montgomery County floodplains

Numerous Other Examples

Colony Ridge

Commons
of Lake
Houston

Romerica

Texas has more people living in floodplains than the entire populations of 30 states.